L-ascorbic acid represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60.

نویسندگان

  • Seong-Su Han
  • Kihyun Kim
  • Eun-Ryeong Hahm
  • Sook J Lee
  • Young-Joon Surh
  • Hye K Park
  • Won S Kim
  • Chul W Jung
  • Mark H Lee
  • Keunchil Park
  • Jung-Hyun Yang
  • Sung-Soo Yoon
  • Neil H Riordan
  • Hugh D Riordan
  • Bruce F Kimler
  • Chan H Park
  • Je-Ho Lee
  • Seyeon Park
چکیده

There is increasing evidence that L-ascorbic acid (LAA) is selectively toxic to some types of cancer cells at pharmacological concentrations, functioning as a pro-oxidant rather than as an anti-oxidant. However, the molecular mechanisms by which LAA initiates cellular signaling leading to cell death are still unclear. In an effort to gain insight into these mechanisms, the effects of LAA on eukaryotic transcription nuclear factor NF-kappaB and cyclooxygenase-2 (COX-2) expression were investigated. In the present study, LAA suppressed DNA binding activity of NF-kappaB, composed of a p65/p50 heterodimer, through inhibition of degradation of inhibitory kappaB-alpha (IkappaB-alpha) and prevention of nuclear translocation of p65. The inhibitory effect of LAA on NF-kappaB activity was dependent upon glutathione levels in HL-60 cells, as well as generation of H2O2 but not superoxide anion. LAA also downregulated the expression of COX-2, which has a NF-kappaB binding site on its promoter, through repressing NF-kappaB DNA binding activity. Moreover, cotreatment of 1 microM arsenic trioxide (As2O3) with various concentrations of LAA enhanced an LAA-induced repression of NF-kappaB activity and COX-2 expression. In conclusion, our data suggest that LAA exerts its anti-tumor activity through downregulation of NF-kappaB activity and COX-2 expression, and these inhibitory effects can be enhanced by co-treatment with As2O3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of NF-kappaB in fusogenic membrane glycoprotein causing HL-60 cell death: implications for acute myeloid leukemia.

Viral fusogenic membrane glycoproteins (FMGs) are new therapeutic genes for the control of tumor growth, the cellular mechanisms mediating cell death is non-apoptotic. However, the precise molecular mechanism remains to be elucidated. Here, we showed overexpression of HSP70 in HL-60 cells mediated by Gibbon Ape leukemia virus hyperfusogenic envelope protein (GALV-FMG) inhibited the nuclear tran...

متن کامل

Epigenetic effects of decitabine on acute lymphoblastic and acute promyelocytic leukemia cells

Background: Decitabine (5-aza-2'-deoxycytidine, DAC) is a deoxycytidine analog currently used as an effective drug against myelodysplastic syndromes and acute myeloid leukemia. Although various studies have pointed out the epigenetic effects of this drug, its epigenetic mechanisms in different leukemic cell lines are not specified. In this lab trial study, possible epigenetic effects of decitab...

متن کامل

Molecular target therapy of AKT and NF-kB signaling pathways and multidrug resistance by specific cell penetrating inhibitor peptides in HL-60 cells.

BACKGROUND PI3/AKT and NF-kB signaling pathways are constitutively active in acute myeloid leukemia and cross-talk between the two has been shown in various cancers. However, their role in acute myeloid leukemia has not been completely explored. We therefore used cell penetrating inhibitor peptides to define the contributions of AKT and NF-kB to survival and multi drug resistance (MDR) in HL-60...

متن کامل

Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.

The cellular accumulation of vitamin C, a substance critical to human physiology, is mediated by transporters located at the cell membrane, and is regulated in a cell-specific manner. Neoplastic cells may have special needs for vitamin C. Therefore, we investigated the transport of vitamin C in a human myeloid leukemia cell line (HL-60). The HL-60 cells lacked the capacity to transport the redu...

متن کامل

Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione.

Human myeloid leukemia cells (HL-60) transport only the oxidized form of vitamin C (dehydroascorbic acid) and accumulate the vitamin in the reduced form, ascorbic acid. We performed a detailed study of the role of glutathione in the intracellular trapping/accumulation of ascorbic acid in HL-60 cells. Uptake studies using HL-60 cells depleted of glutathione by treatment with L-buthionine-(S,R) s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cellular biochemistry

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2004